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Inside Singularity Sets of Random Gibbs Measures
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We evaluate the scale at which the multifractal structure of some random
Gibbs measures becomes discernible. The value of this scale is obtained through
what we call the growth speed in Hölder singularity sets of a Borel measure.
This growth speed yields new information on the multifractal behavior of the
rescaled copies involved in the structure of statistically self-similar Gibbs mea-
sures. Our results are useful to understand the multifractal nature of various
heterogeneous jump processes.

KEY WORDS: Random Gibbs measures; self-similarity; large deviations; Haus-
dorff dimension; fractals.

1. INTRODUCTION

Contrary to what happens with monofractal measures (for instance
uniform measures on regular Cantor sets), multifractal measures exhibit
simultaneously several different behaviors at small scales. It is natural to
question from which scale the multifractal structure of these measures
becomes discernible and remains stable. This paper introduces a notion
which provides a way to examinate the value of this critical scale. This
notion, that we call growth speed in singularity sets, is naturally related
with multifractal measures. In the following, we define and study the
growth speed in singularity sets for a class of statistically self-similar mea-
sures which includes random Gibbs measures. This work requires refine-
ments of the known theoretical results on the multifractal nature of these
measures. Finally, we obtain rigorous estimates of the error made when
approximating the asymptotic local behavior of the measure by observing
it at a fine but fixed grid.
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Before making precise all these notions, let us explain what one of
our main motivations was. The new multifractal properties we point out
in this paper are naturally involved in the small-scale structure analysis
of some jump processes recently considered in refs. 4, 7, and 8. Typi-
cal examples of such heterogeneous jump processes are Lévy processes
in multifractal time. Performing a multifractal time change in irregular
processes is a natural idea when trying to build multi-parameter pro-
cesses.(21,23,29) Indeed, such processes yield multifractal objects with an
interesting structure, that may be more realistic than classical homoge-
neous jump processes (for instance like Lévy processes) for the purpose of
modeling multifractal discontinuous phenomena (Internet traffic,(19) varia-
tions of financial prices.(21)) Another relevant property of these processes
is that they provide new illustrations of multifractal formalisms.(4,10,14,24)

Our results provide tools to study these processes. Indeed, the mul-
tifractal analysis of heterogeneous jump processes in refs. 4, 7, and
8 requires to deepen our knowledge regarding statistically self-similar
singular measures generated by multiplicative processes. The fact that
these measures are locally equivalent to a rescaled copy of themselves
is exploited in a new direction using the notion of growth speed in the
Hölder singularity sets of these copies. The growth speed yields new
insights on the structure of the process, which are more precise than
those obtained by only considering individually these copies as the same
probabilistic object. In particular, it provides a new quantitative way of
distinguishing two well-known families of statistically self-similar singu-
lar measures, namely the random Gibbs measures(15) and the indepen-
dent random cascades, like Mandelbrot canonical cascades.(20) This paper
focuses on random Gibbs measures, the case of the Mandelbrot canonical
cascades is very different and treated in ref. 6.

The multifractal structure of random Gibbs measures has been exten-
sively studied.(3,12–14,16,25,27) This topic is concerned with the size esti-
mation of the Hölder singularity sets of such a measure µ. These
sets are defined as the level sets of the pointwise Hölder exponent
limr→0+(logµB(t, r))/ log(r). The sizes of Hölder singularity sets are mea-
sured through their Hausdorff (or packing) dimension. It can be shown
that these dimensions are obtained thanks to the Legendre transform of
a kind of free energy function τµ related to µ. More precisely, let b be an
integer � 2 and A the alphabet {0, . . . , b− 1}. Suppose that we are work-
ing on the symbolic space A = AN

∗
endowed with the product topology

and the one-sided shift transformation σ . If w∈A∗ =⋃n�1 An, the n step
cylinder about w in A is denoted by [w]. The measures we are interested
in are associated with some (random) Hölder potentiel and the dynamical
system (A, σ ).
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The function τµ considered in the multifractal formalism for measures
in refs. 10 and 14 is obtained as follows: For every q ∈R, let

∀ j �1, τµ,j (q)=−1
j

logb
∑

w∈Aj

µ([w])q and τµ(q)= lim inf
j→∞

τµ,j (q).

(1)

The Legendre transform of τµ at α>0 is then τ ∗
µ(α) := infq∈R αq− τµ(q).

Then the Hölder singularity set of level α>0 is defined as

Eµα =
{
t ∈A : lim

n→∞
logb µ

(
[t |n]

)

n
=α

}

(t |n stands for t1 · · · tn). The Gibbs measures we consider obey the multi-
fractal formalism in the sense that dim E

µ
α = τ ∗

µ(α) when τ ∗
µ(α)>0.

This property is classically implied by the existence of a probability
measure µα of the same nature as µ and such that µα is concentrated on
E
µ
α ∩Eµατ∗

µ(α)
. This measure µα is called an analyzing measure of µ at α.

The existence of the measure µα has another important consequence
regarding the possibility of measuring how the mass of µ is distributed at
a given large enough scale. Indeed, a direct consequence of the multifrac-
tal formalism(28) and the existence of µα is that for any ε > 0 and α > 0
such that τ ∗

µ(α)>0, one has

lim
j→∞

logb #
{
w∈Aj :b−j (α+ε)�µ([w])�b−j (α−ε)}

j
= τ ∗

µ(α). (2)

The result we establish in this paper brings precisions on these sizes
estimates. We consider a refined version of the sets Eα(µ) by considering,
for any sequence εn going down to 0, the sets

Ẽµα,p=
{
t ∈A :∀ n�p, b−n(α+εn)�µ

(
[t |n])

)
�b−n(α−εn)

}

and Ẽµα =
⋃

p�1

Eµα,p. (3)

It is possible to choose (εn)n�1 so that with probability one, for all the
exponents α such that τ ∗

µ(α)>0, one has µα(Ẽ
µ
α )=‖µα‖=1.



1104 Barral and Seuret

Since the sets sequence Ẽµα,p is non-decreasing and µα(Ẽ
µ
α )= 1, the

growth speed GS(µ,α) in Ẽµα can be defined as the smallest value of p for
which the µα-measure of Ẽµα,p reaches a certain positive fraction f ∈ (0,1)
of the mass of µα, that is the number

GS(µ,α)= inf
{
p :µα(Ẽµα,p)�f ‖µα‖

}
.

Now for n�1 and α>0 let

Nn(µ,α)=#
{
w∈An :b−n(α+εn)�µ([w])�b−n(α−εn)}. (4)

Heuristically, one has

GS(µ,α)≈ inf{p :∀n�p, bn(τ∗(α)−εn)�Nn(µ,α)�bn(τ
∗(α)+εn)},

i.e. GS(µ,α) controls by above the smallest rank p from which consider-
ing the evaluation of Nn(µ,α) at any scale b−n smaller than b−p yields a
correct representation of the asymptotic behavior of Nn(µ,α).

Our results concern estimates of the growth speed of singularities sets
of copies of µ involved in the self-similarity property of µ. To illustrate
our purpose, let us describe the model of statistically self-similar measures
we shall work with in the sequel. We shall consider a natural random
counterpart to quasi–Bernoulli measures introduced in refs. 10 and 22 and
mainly illustrated by deterministic Gibbs measures on A. We are inspired
in particular by self-similar Riesz products and their random version con-
structed with random phases (see ref. 12 and examples of Section 3).

1.1. Quasi–Bernoulli Independent Random Measure

In the sequel ≡ means equality in distribution.
A random probability measure µ = µ(ω) on A is said to be a

quasi–Bernoulli independent random measure if there exists a constant C>0
and two sequences of random measures (µj )j�1 and (µ(j))j�1 such that
for every j �1,

• (P1) ∀ (v,w) ∈ Aj × A∗, 1
C
µj ([v])µ(j)([w]) � µ([vw]) �

Cµj ([v])µ(j)([w]),

• (P2) for every r ∈{0, . . . , b−1}, 0<ess inf µ([r])�ess sup µ([r])<∞,

• (P3)
(
µ(j)([w])

)
w∈A∗ ≡ (µ([w])

)
w∈A∗ . µ is also denoted µ(0),

• (P4) σ(µj ([v]) :v∈Aj ) and σ(µ(j)([w]) :w∈A∗) are independent.
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The measures µ(j) are the copies of µ mentioned in the paragraphs
above.

1.2. Controlling the Growth Speed in Hölder Singularity Sets

of the (µ(j ))’s

Let µ be quasi–Bernoulli independent measure. For each copy µ(j) of
µ, the corresponding family of analyzing measures µ(j)α will be defined as
µα is defined for µ. The result we focus on is the asymptotic behavior of

GS(µ(j), α)= inf
{
N :µ(j)α

(
Ẽ
µ(j)

α,N

)
�f ‖µ(j)α ‖

}
as j→∞. (5)

For sake of simplicity, we give in this introduction a shorter version of our
main result (Theorem 2).

Theorem A. The function τµ is deterministic. Suppose that it is C2.
With probability one, for all α > 0 such that τ ∗

µ(α)> 0 there exists β > 0
such that if j is large enough, GS(µ(j), α)� exp

√
β log j .

Let us introduce the quantity

GS′(µ(j), α)= inf
{
p :∀ n�p,bn(τ∗

µ(α)−εn)�Nn(µ
(j), α)�bn(τ∗

µ(α)+εn)}.

Theorem A also implies a control of Nn(µ
(j), α) (recall (4)). A stronger

version (Theorem 3) of the following result is going to be proved.

Theorem B. Suppose that τµ is C2. The same conclusion as in The-
orem A holds if GS(µ(j), α) is replaced by GS′(µ(j), α).

As claimed above, Theorems A and B indeed yields new information
on the multifractal structure of random Gibbs measures.

Section 2 contains new definitions and two propositions that are used
in Sections 3 and 5 to state and prove stronger versions of Theorems A
and B. Section 4 contains the proof of results concerning the speed of con-
vergence of τµ,j to τµ.

We end this introduction by giving an application of Theorem A.

1.3. An Application: The Hausdorff Dimension of New Limsup Sets

Let µ be a quasi–Bernoulli independent random measure as defined
previously and consider ν, its projection on [0,1]. Examples of jump pro-
cesses of refs. 4 and 8 are
∑

j�0

∑

0�k�bj−1

j−2 ν([kb−j , (k+1)b−j ]) δkb−j and
(
X ◦ν([0, t ]))0�t�1,
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where X is a Lévy process. Basically, if {xn} denotes the countable set of
jump points of such a process and (λn)n�1 is a sequence decreasing to
0 such that lim supn→∞B(xn, λn)= [0,1], the multifractal nature of these
processes is closely related to the computation of the Hausdorff dimension
of the sets defined for every α>0, ξ >1 by

K(α, ξ) =
⋂

N�1

⋃

n�1:λα+εn
n �ν([xn−λn,xn+λn])�λα−εn

n

[xn−λξn, xn+λξn]

for some sequence (εn) converging to 0. The set K(α, ξ) contains the
points that are infinitely often close to a jump point xn at rate ξ relatively
to λn, upon the condition that ν([xn− λn, xn+ λn])∼ λαn . This last condi-
tion implies that ν has roughly a Hölder exponent α at scale λn around
xn. One of the main results of refs. 4 and 9 (see also ref. 5) is the compu-
tation of the Hausdorff dimension of K(α, ξ). Under a suitable assump-
tion on (λn), it is proved in refs. 4 and 9 that, with probability one, for
all α such that τ ∗

µ(α)>0 and all ξ �1,

dim K(α, ξ)= τ ∗
µ(α)/ξ, (6)

where dim stands for the Hausdorff dimension. This achievement is a non-
trivial generalization of what is referred to as “ubiquity” properties of
the resonant system {(xn, λn)}. Ubiquity plays a role for instance in the
description of exceptional sets arising in the problem of small denomi-
nators and the physical phenomenon of resonance.(1,11) In the classical
result, ν is equal to the monofractal Lebesgue measure, so α=1, the con-
dition λ

α+εn
n �ν([xn−λn, xn+λn])�λα−εn

n is trivial, and dim K(1, ξ)=1/ξ
(see ref. 11 for instance).

The fact that, by Theorem A, the growth speed GS(µ(j), α) behaves
like o(j) as j → ∞ is a crucial issue in constructing a Cantor set of
Hausdorff dimension τ ∗

µ(α)/ξ in K(α, ξ).

2. DEFINITIONS, GROWTH SPEED IN SINGULARITY SETS

In the sequel, (�,B,P) denotes the probability space on which the
random variables of this paper are defined.

2.1. Measure of Singularity Sets: A Neighboring Boxes Condition

Let µ and m be two probability measures with supports equal to A.
With any w∈An can be associated the integer i(w)∈{0,1, . . . , bn−1}

such that the b-adic subinterval of [0,1] naturally encoded by w is
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[i(w)b−n, (i(w) + 1)b−n] (alternatively i(w)b−n = ∑n
k=1wkb

−k). Then, if
(v,w)∈An, δ(v,w) stands for |i(v)− i(w)|. This defines an integer valued
distance on An. This distance yields a notion of neighbors for cylinders of
the same generation. This notion coincides with the natural one on b-adic
subintervals of the same generation in [0,1].

Let ε̃= (εn)n�0 be a positive sequence, N �1, and β�0.
We consider a slight refinement of the sets introduced in (3): For

p�1,

E
µ
β,p(N, ε̃)=

⎧
⎪⎨

⎪⎩
t ∈A:

⎧
⎪⎨

⎪⎩

∀n�p, ∀ γ ∈{−1,1},
∀w∈An, δ(w, t |n)�N,

bγn(β−γ εn)µ([w])γ �1

⎫
⎪⎬

⎪⎭

and E
µ
β (N, ε̃)=

⋃

p�1

E
µ
β,p(N, ε̃). (7)

This set contains the points t for which, at each scale n large enough, the
µ-measures of the 2N+1 neighbors of [t |n] (for the distance δ) belong to
[b−n(β+εn), b−n(β−εn)]. Controlling the mass of these neighbors is necessary
in the proof of (6) when µ is a quasi–Bernoulli independent random mea-
sure.

For n�1 and ε, η>0, let us define the quantity

SN,ε,ηn (m,µ,β)=
∑

γ∈{−1,1}
bn(β−γ ε)γ η ∑

v,w∈An: δ(v,w)�N
m([v])µ([w])γ η. (8)

Proposition 1. Let (ηn)n�1 be a positive sequence.
If
∑
n�1 S

N,εn,ηn
n (m,µ,β)<+∞, then E

µ
β (N, ε̃) is of full m-measure.

Remark 1. The same kind of conditions was used in ref. 2 to obtain
a comparison between the box(10) and centred(24) multifractal formalisms.

Proof. For γ ∈{−1,1} and n�1, let us define

E
µ
β (N, εn, γ )=

⎧
⎪⎨

⎪⎩
t ∈A :

⎧
⎪⎨

⎪⎩

∀ w∈An,

δ(w, t |n)�N,
bγn(β−γ εn)µ([w])γ �1

⎫
⎪⎬

⎪⎭
. (9)
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For t ∈ A, if there exists (a necessarily unique) w ∈ An such that i(w)−
i(t |n) = k, this word w is denoted wk(t). For γ ∈ {−1,1}, let Sn,γ =∑

−N�k�N mk with

mk =m({t ∈A :bγn(β−γ εn)µ(wk(t))γ >1
})
.

One clearly has

m
(
(E

µ
β (N, εn,−1))c

⋃
(E

µ
β (N, εn,1))

c
)
�Sn,−1 +Sn,1. (10)

Fix ηn>0 and −N�k�N . Let Y (t) be the random variable which equals
bγn(β−γ εn)ηnµ([wk(t)])γ ηn if wk(t) exists, and 0 otherwise. The Markov
inequality applied to Y (t) with respect to m yields mk�

∫
Y (t)dm(t). Since

Y is constant over each cylinder [v] of generation n, we get

mk �
∑

v,w∈An:i(w)−i(v)=k
bn(β−γ εn)γ ηnm([v])µ([w])γ ηn .

Summing over |k| �N yields Sn,−1 + Sn,1 � SN,εn,ηnn (m,µ,β). The conclu-
sion follows from (10) and from the Borel–Cantelli Lemma.

2.2. Growth Speed in Families of Singularity Sets

Let � be a set of indexes, and �∗ a measurable subset of � of proba-
bility 1. Some notations and technical assumptions are needed to state the
result.

• For every ω ∈�∗, we consider two sequences of families of mea-
sures

(
{µ(j)λ }λ∈�

)

j�0
and

(
{m(j)λ }λ∈�

)

j�0
such that for every j � 0, the

elements of the families {µ(j)λ }λ∈� and {m(j)λ }λ∈� are probability measures
on A. For ν ∈{µ,m}, {ν(0)λ }λ∈� is written {νλ}λ∈�.

• We consider an integer N�1, and a positive sequence ε̃= (εn)n�1,
as well as a family of positive numbers (βλ)λ∈�. Then, remembering (9) let
us consider for every j �0 and p�1 the sets

E
µ
(j)
λ

βλ,p
(N, ε̃)=

⋂

n�p
E
µ
(j)
λ

βλ
(N, εn,−1)∩Eµ

(j)
λ

βλ
(N, εn,1). (11)
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• Given j � 0 and λ ∈ �, the sets E
µ
(j)
λ

βλ,p
(N, ε̃)}, p � 1, form a

non-decreasing sequence. One then defines the growth speed of these sets
respectively to m

(j)
λ as the quantity

GS(m
(j)
λ ,µ

(j)
λ , βλ,N, ε̃)= inf

{
p�1 : m(j)λ

(
E
µ
(j)
λ

βλ,p
(N, ε̃)

)
�1/2

}
. (12)

This number, maybe infinite, is a measurement of the number p of gen-

erations needed for E
µ
(j)
λ

βλ,p
(N, ε̃) to recover a certain given fraction (here

chosen equal to 1/2) of the probability measure m(j)λ . We assume that m(j)λ
is concentrated on limp→+∞E

µ
(j)
λ

βλ,p
(N, ε̃), so that GS(m(j)λ ,µ

(j)
λ , βλ,N, ε̃)<

∞.

• We assume that for every positive sequence η̃= (ηj )j�0, there exist
– a random vector V (̃η)∈R

N+, a sequence (V (j))j�0 of copies of V (̃η),
– a sequence (ψj (̃η))j�0 such that for P-almost every ω∈�∗,

∀ j �0, ∀n�ψj (̃η), V
(j)
n � sup

λ∈�
SN,εn,ηnn (m

(j)
λ ,µ

(j)
λ , βλ), (13)

where SN,εn,ηnn (m
(j)
λ ,µ

(j)
λ , βλ) is defined in (8). This provides us with a uni-

form control over λ∈� of the families of measures (m(j)λ ,µ
(j)
λ )j�0.

Proposition 2 (uniform growth speed in singularity sets). Let η̃ =
(ηj )j�0 be a the sequence of positive numbers.
Let (Sj )j�0 be a sequence of integers such that Sj �ψj (̃η). Assume that

∑

j�0

∑

n�Sj
E

(
Vn(̃η)

)
<∞. (14)

With probability one, for every j large enough, for every λ∈�, one has

GS(m
(j)
λ ,µ

(j)
λ , βλ,N, ε̃)�Sj .

Proof. Fix j � 1. As shown in Proposition 1, for every n� 1 and
every λ∈�, one can write

m
(j)
λ

((
E
µ
(j)
λ

βλ
(N, εn,−1)

)c ∪ (Eµ
(j)
λ

βλ
(N, εn,1)

)c
)

�SN,εn,ηnn (m
(j)
λ ,µ

(j)
λ , βλ).



1110 Barral and Seuret

Thus, using (13), one gets

m
(j)
λ

( ⋃

n�Sj

(
E
µ
(j)
λ

βλ
(N, εn,−1)

)c ∪ (Eµ
(j)
λ

βλ
(N, εn,1)

)c
)

�
∑

n�Sj
V
(j)
n . (15)

Now (14) yields

∑

j�1

P

( ∑

n�Sj
V
(j)
n �1/2

)
�2

∑

j�1

E

( ∑

n�Sj
V
(j)
n

)
<∞.

Thus, with probability one,
∑
n�Sj V

(j)
n < 1/2 for every j large enough.

This, combined with (11), (12) and (15), implies that, with probability one,
for all j large enough, for every λ∈�, GS(m(j)λ ,µ

(j)
λ , βλ,N, ε̃)�Sj .

3. MAIN RESULTS

3.1. Examples of Quasi–Bernoulli Independent Measures

It is not difficult to show that, in the setting of ref. 15, the two fol-
lowing examples can be seen as random Gibbs measures associated with a
random Hölder potential in the dynamical system (A, σ ).

Example 1 (multinomial random measures). Let (W0, . . . ,Wb−1) be a
positive random vector such that

∑b−1
k=0Wj = 1 almost surely, and let(

(W0, . . . ,Wb−1)(j)
)
j�1 be a sequence of independent copies of the vector

(W0, . . . ,Wb−1). Let � denote the unique measure on A such that �([w])=
b−n for w∈An.

With probability one, the sequence of measures (µj )j�1 defined on A

by

dµj

d�
(t)=bj

j∏

k=1

Wwk(k) t ∈ [w1 . . .wj ] (16)

converges weakly, as j → ∞, to a probability measure µ which clearly
satisfies (P1)–(P4). Here µ(j) is constructed like µ, but with the vectors(
(W0, . . . ,Wb−1)(k)

)
k�j+1 instead of

(
(W0, . . . ,Wb−1)(k)

)
k�1.

Example 2 (random Riesz products). Let φ be a 1-periodic Hölder
continuous function on R and let (θk)k�0 be a sequence of independent
random variables uniformly distributed in [0,1]. Let π : A → [0,1] be the
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mapping t= t1 · · · tk · · · �→∑
k�1 tkb

−k. Then consider on A the sequence of
measures (µj )j�0 whose density with respect to � is given by

dµj

d�
(t)=

∏j−1
k=0 exp

(
φ(bkπ(t)+ θk)

)

∫ 1
0
∏j−1
k=0 exp

(
φ(bkπ(u)+ θk)

)
du
. (17)

Because of Theorems 3.1 and 3.2 in ref. 15, with probability one, the
sequence {µj } converges weakly to a probability measure µ. Moreover, it
is shown in refs. 3 and 12 that, because of the Hölder regularity and the
1-periodicity of φ, properties (P1)–(P3) hold. Property (P4) follows from
the fact that the θk’s are chosen independent. Here µ(j) is constructed like
µ, but with the phases (θk)k�j+1 instead of (θk)k�1.

3.2. Identification of the Function τµ and Auxiliary Measures

Let µ be quasi-Bernoulli independent random measure. We specify
the scaling function τµ and the family of analysing measures discussed in
the Introduction.

• The function τµ. For every j, k�1, let us define the function

τ
(k)
j :q ∈R �→−1

j
logb

∑

w∈Aj

(µ(k))j ([w])q,

where (µ(k))j denotes the measure associated with µ(k) like µj is associ-
ated with µ in formulas (16) and (17). When k=0 we simply write τj (q).

The same arguments as those used in refs. 3 and 12 (mainly based on
Kingman’s sub-multiplicative ergodic theorem) show that, with probability
one, for all q ∈ R and for all k� 0, τ (k)j (q) converges, as j → +∞, to a
real number τµ(q) (thus independent of k). τµ(q) coincides with the num-
ber defined in (1). Moreover, τµ(q) is also the limit when j→+∞ of the
sequence E

(
τj (q)

)
. In particular the mapping q �→ τµ(q) is deterministic.

Due to the concavity of τj , with probability one, τj converges uni-
formly to τµ on compact sets.

• Auxiliary measures. The multifractal spectrum of µ is obtained
thanks to the following auxiliary measures µq . Let �∗ be a subset of �
with P(�∗)= 1 such that the conclusions of Proposition 3 hold for all
ω ∈�∗. For every ω ∈�∗, for all q ∈ R and for all j � 1, let µq,j be the
probability measure with a density with respect to the measure � on [v]
(for every v∈Aj ) given by bjµ([v])qbjτj (q).
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If ω is still fixed, for every q ∈ R one can consider a subsequence
jn(q) such that the sequence {µq,jn(q)}n converges weakly to a measure µq
(which depends on ω). This can also be done for the measures µ(j). For
every fixed ω∈�∗, for all j �1 and q ∈R, a measure µ(j)q is built as µq .

3.3. Main Results

In the sequel, [x] stands for the integer part of the real number x.
If the function τµ is differentiable, J stands for the open interval {q ∈R :
τ ′
µ(q)q− τµ(q)>0}.

Theorem 1. Let µ be a quasi–Bernoulli independent random mea-
sure, and assume that τµ is twice continuously differentiable. Let ε̃ =
(εn)n�1 a sequence of positive numbers going to 0. Assume that ∀ (M,α)>
0 the series

∑
n�1 b

Mn3/4 log(n)b−nαε2
n converges.

With probability one, ∀q ∈ J , the singularity sets E
µq
τ ′
µ(q)q−τµ(q)(N, ε̃)

and E
µ

τ ′
µ(q)

(N, ε̃) (defined in (7)) are both of full µq -measure.

Remark 2. (1) As soon as εn�n−1/8 log(n)1/2+η for some η>0, one
has bMn

3/4 log(n)b−nαε2
n � n−(1+2η) for all M>0. The conclusions of Theo-

rem 1 thus hold in this case.
In view of the law of the iterated logarithm (see refs. 17 and 26), one

could expect ε̃ to decrease faster toward 0. This is not the case because
we impose the control of neighboring cylinders (in the sense of δ) and the
uniform control over the parameter q.

(2) In Examples 1 and 2, τµ is analytic (see ref. 3 and references
therein).

The next statement uses the definitions introduced in Section 2.2. The
measures µ(j) and µ(j)q play, respectively, the role of µ(j)λ and m(j)λ for j �1.

Theorem 2 (growth speed in singularity sets). Under the assumptions
of Theorem 1, let us choose η> 0, N � 1 and a sequence ε̃= (εn) so that
εn�n−1/8 log(n)1/2+η. Let us also fix α>1.

For every compact subinterval K of J , with probability one, for j
large enough and for all q ∈K, if Sj = [ exp

(√
α log(j)

)]
, one has

max
(
GS

(
µ
(j)
q ,µ(j), τ ′

µ(q),N, ε̃
)
,GS

(
µ
(j)
q ,µ

(j)
q , τ ′

µ(q)q− τµ(q),N, ε̃
))

�Sj .

Remark 3. Instead of a fixed number of neighbors, it is not difficult
to treat the case of an increasing sequence of neighbors Nn, simulta-
neously with the speed of convergence εn. This number Nn can then go
to ∞ under the condition that logNn=o(nε2

n).
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Another improvement consists in replacing the fixed fraction f in (5)
by a fraction fj going to 1 as j goes to ∞. The choice fj =1−b−sj with

sj =o
([

exp
(√
α log(j)

)])
is convenient, as the reader can check.

Let us recall that for all integers j �1 and n�1

Nn(µ
(j), α, εn)=#

{
w∈An :b−n(α+εn)�µ(j)([w])�b−n(α−εn)}. (18)

Theorem 3 (speed of renewal of large deviation spectrum). Under
the assumptions of Theorem 1, let us choose εn � n−1/8 log(n)1/2+η for
some η > 0. Let K be a compact subinterval of J , and let β = 1 +
maxq∈K |q|.

For every α>1, with probability one, for j large enough, for all q∈K
and for all n�

[
exp

(√
α log(j)

)]
, one has

bn(τ
′
µ(q)q−τµ(q)−βεn)�Nn

(
µ(j), τ ′

µ(q), εn
)
�bn(τ ′

µ(q)q−τµ(q)+βεn).

The following Propositions are useful in the sequel.

Proposition 3. Let K be a compact subset of R, and let us fix
α>1.

1. There exists a constant CK such that

for every n�1, sup
q∈K

∣
∣E
(
τn(q)

)− τµ(q)
∣
∣�CK n−1.

2. There exists a constant CK such that with probability one

for every n large enough, sup
q∈K

|τn(q)− τµ(q)|�CK log(n)n−1/4

and for j large enough, for every n�
[

exp
(√
α log(j)

)]
,

sup
q∈K

|τ (j)n (q)− τµ(q)|�CK log(n)n−1/4.
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Proposition 4. Assume that τµ is differentiable and that K⊂{q ∈R :
τ ′
µ(q)q− τµ(q)>0}. Let us denote gk the word consisting of k consecutive

zeros and dk the word consisting of k consecutive b−1.
There are three constants (C, η0,�)∈R

∗3+ such that with probability one,

sup
q∈K,n�0

γ∈{−1,1}, η∈(0,η0]

(

µq([dn])
µ([gn])γ η

µ([dn])γ η
+µq([gn])

µ([dn])γ η

µ([gn])γ η

)

bn�η�C,

and for j large enough, for every n�
[

exp
(√
α log(j)

)]
,

sup
q∈K,

γ∈{−1,1}, η∈(0,η0]

(

µ
(j)
q ([dn])

µ(j)([gn])γ η

µ(j)([dn])γ η
+µ(j)q ([gn])

µ(j)([dn])γ η

µ(j)([gn])γ η

)

bn�η�C.

Propositions 3 and 4 are proved in Section 4, and the theorems in Sec-
tion 5.

4. PROOFS OF PROPOSITION 3 AND 4

4.1. Proof of Proposition 3

1. The arguments are standard. For q ∈ R and j � 1, let us define
Lj (q)= jE

(
τj (q)

)
. As a consequence of (P1),

C−|q| ∑

v∈Aj ,w∈An

(µj ([v])µ(j)([w]))q �
∑

v∈Aj+n
µ([v])q

and
∑

v∈Aj+n
µ([v])q � C|q| ∑

v∈Aj ,w∈An

(µj ([v])µ(j)([w]))q .

Using then (P3) and (P4), and the definition of τj (q), one gets

∀ j, n�1, ∀q ∈R, |Lj+n(q)−Lj (q)−Ln(q)|�Cq :=|q| logb(C).

It follows that the two sequences Lj (q)+Cq and −Lj (q)+Cq are sub-
additive. Consequently, the sequence (Lj (q) + Cq)/j converges, as j →
+∞, to its infimum denoted by L(q). Similarly, the sequence (−Lj (q)+
Cq)/j converges to −L(q). This yields that

∀ j �1, ∀q ∈R,
∣
∣Lj (q)/j −L(q)∣∣�Cq/j, (19)

which gives the desired conclusion since we have seen that L(q)= τµ(q).
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2. We invoke a property which does hold because of (P2): there
exists M>0 such that with probability one,

∀q, q ′ ∈R
2, ∀ j �1, |τj (q)− τj (q ′)|�M|q−q ′|. (20)

Fix K, a non-trivial compact subinterval of R.
For q ∈K, j �0 and n�1, let us define the random variables

L
(j)
n (q)=− logb

∑

w∈An

(µ(j))n([w])q

and Ln(q)=L(0)n (q). It follows from (P1) and (P4) that

∀q ∈K, ∀ j, n�1, ∀q ∈K, |Lj+n(q)−Lj (q)−L(j)n (q)|� |q| logb(C). (21)

Let CK = supq∈K |q| logb(C), and fix q ∈K. For every integer m� 1, we
write m = [

√
m]2 + im where im ∈ [0,3

√
m]. Using again (P1)–(P4), one

deduces from (21) that for every m�1, there exist [
√
m] independent cop-

ies X(m)1 , . . . ,X
(m)

[
√
m] of L[

√
m](q) such that

∣
∣
∣Lm(q)−

[
√
m]∑

i=1

X
(m)
i (q)

∣
∣
∣�CK [

√
m]+|Lim(q)|�4CK

√
m. (22)

We invoke the following concentration inequality (see Lemma 1.5 of
ref. 18)

Lemma 1. Let n�1 and let (Yi)1�i�n be a sequence of random var-
iable i.i.d. with a centred and bounded random variable Y . For all s >0,

P

(∣
∣
∣

n∑

i=1

Yi

∣
∣
∣>‖Y‖∞s

√
n
)

�2 exp
(
−s2/2

)
.

Let us define the random variables Y (m)i (q) = X
(m)
i (q) − E

(
X
(m)
i (q)

)
. By

(P2), one can find a constant MK >0 such that supq∈K |Ymi (q)|�MK [
√
m].

As a consequence, Lemma 1 can be applied to the bounded family
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Y
(m)

1 (q), . . . , Y
(m)

[
√
m](q). Then choosing s=√

2 log(m) yields (remember that
‖Y‖∞ �MK [

√
m])

P

⎛

⎝
∣
∣
∣

[
√
m]∑

i=1

Y
(m)
i (q)

∣
∣
∣>

√
2MK log(m)[

√
m]3/2

⎞

⎠� exp
(− (logm)2

)
.

For every m� 1, let q(m)1 <q
(m)

2 < · · ·<q(m)k < · · · be a finite sequence of
points of K such that q(m)

k+1 − q(m)k �m−1/4, and denote by Rm the set of
these points. We can assume that the cardinality of Rm is less than or
equal to |K|√m+1. Then

∑

m�1

P

⎛

⎝∃ q ∈Rm,

∣
∣
∣
∣

[
√
m]∑

i=1

Y
(m)
i (q)

∣
∣
∣
∣>

√
2MK log(m)[

√
m]3/2

⎞

⎠

�
∑

m�1

|K|√m+1 exp
(− (logm)2

)
<∞.

This implies that for m large enough, for every q ∈Rm,
∣
∣
∣
∣
∣
∣

[
√
m]∑

i=1

Y
(m)
i (q)

∣
∣
∣
∣
∣
∣
�

√
2 logmMK [

√
m]3/2. (23)

On the other hand, remembering the proof of item 1 and (19), one has

∀q ∈Rm,
∣
∣E
(
Xm1 (q)

)− [
√
m]τµ(q)

∣
∣�CK. (24)

For every q ∈Rm,
∣
∣Lm(q)−mτµ(q)

∣
∣ can be upper bounded by

∣
∣
∣
∣
∣
∣
Lm(q)−

[
√
m]∑

i=1

X
(m)
i (q)

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

[
√
m]∑

i=1

Y
(m)
i (q)

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

[
√
m]∑

i=1

E
(
X
(m)
i (q)

)− [
√
m]2τµ(q)

∣
∣
∣
∣
∣
∣
+ im|τµ(q)|.

With probability one, for m large enough, using, respectively (22) and (24),
this first and the third term are both bounded by a O

(
[
√
m]
)

(which does
not depend on q). Using (23) and remarking that im=O([√m]

)
, one gets

∣
∣Lm(q)−mτµ(q)

∣
∣ �

√
2MK log(m)[

√
m]3/2 +O([√m]

)
,
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where O
(
[
√
m]
)

is uniform over q ∈ Rm. This yields |τm(q) − τµ(q)| =
O
(

log(m)m−1/4
)

uniformly for q ∈Rm when m is large enough. The con-
clusion follows from (20) and from the construction of the sets Rm.

Let us show the second inequality of item 2. For every j � 0, m� 1
and q ∈K, let us consider a sequence Y (m),ji (q), 1 � i � [

√
m], associated

with µ=µ(j) like Y (m)i (q), 1 � i � [
√
m], is associated with µ=µ(0). Let

Rm be defined as above, and let us consider the events

A(j,m)=
⎧
⎨

⎩
∃ q ∈Rm,

∣
∣
∣
∣
∣
∣

[
√
m]∑

i=1

Y
(m),j
i (q)

∣
∣
∣
∣
∣
∣
>

√
2MK log(m)[

√
m]3/2

⎫
⎬

⎭
.

One verifies that
∑
j�0

∑
m� [ exp

√
α log(j) ] P

(
A(j,m)

)
<∞. We then deduce

from the Borel–Cantelli Lemma that with probability one, for j large
enough, if m�

[
exp

(√
α log(j)

)]
then A(j,m)c holds. One concludes by

using the same estimates as above.

4.2. Proof of Proposition 4

If tj ∈{gj , dj }, the same kind of arguments as in the proof of Propo-
sition 3 show that, with probability one, �t(1)= limj→∞(1/j) logb

(
µ([tj ])

)

exists, and this number is deterministic. Hence, using (25), with probabil-
ity one, for every q ∈R, the limit �t(q)= limj→∞(1/j) logb

(
µq([tj ])

)
exists

and is equal to q�t(1)+ τµ(q). Since µq is a finite measure, �t(q)�0.
Moreover, there exists CK >0 such that for P-almost every ω∈�∗, for

j large enough, for all q ∈K ∪{1},
∣
∣
∣
1
j

logb
(
µq([tj ])

)−�t(q)
∣
∣
∣�CK log(j)j−1/4

∀ k�
[

exp
(√
α log(j)

)]
,

∣
∣
∣
1
k

logb
(
µ
j
q([tk])

)−�t(q)
∣
∣
∣�CK log(k)k−1/4.

So, for j large enough, γ ∈{−1,1} and η>0, one has

µq([dj ])
µ([gj ])γ η

µ([dj ])γ η
+µq([gj ])

µ([dj ])γ η

µ([gj ])γ η
�f (j)

and ∀ k�
[

exp
(√
α log(j)

)]

µ
(j)
q ([dk])

µ(j)([gk])γ η

µ(j)([dk])γ η
+µ(j)q ([gk])

µ(j)([dk])γ η

µ(j)([gk])γ η
�f (k),
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where

f (j)=b(2η+1)CKj3/4 log(j)b
jη
(
|�d(1)|+|�g(1)|

)(
bj�d(q)+bj�g(q)).

Let us show that �t(q) < 0 for t ∈ {g, d} and q ∈K. Suppose �t(q0)= 0
for some q0 ∈K. Remember that q�t(1)+ τµ(q)=�t(q)� 0 for all q ∈R.
Using the concavity of τµ, the equality �t(q0)= 0 implies that τ ′

µ(q0)=
−�t(1) and then that τ ′

µ(q0)q0 − τµ(q0) = 0, in contradiction with our
assumption K⊂J .

Finally, since �t(q)= q�t(1)+ τµ(q), the mapping q �→�t(q) is con-
tinuous, and the conclusion follows from properties (P1) and (P2), the
compactness of K, and the form of f (j).

5. PROOFS OF THEOREMS 1–3

Mimicking the approach in ref. 3 and using Propositions 3 and 4
show that if K is a compact subset of R, there exists a constant MK such
that, with probability one, for n large enough, ∀v∈An, ∀q ∈K,

M−1
K b−(MK)n

3/4 log(n)� µq([v])

µ([v])qbnτµ(q)
�MKb

(MK)n
3/4 log(n). (25)

and if α>1 is fixed, for the same constant MK , with probability one, for
j large enough, for n�

[
exp

(√
α log(j)

)]
, ∀v∈An, ∀q ∈K,

M−1
K b−(MK)n

3/4 log(n)� µ
(j)
q ([v])

µ(j)([v])qbnτµ(q)
�MKb

(MK)n
3/4 log(n). (26)

Before starting the proofs, let us make a last useful remark.

Remark 4. If v and w are words of length n, and if v̄ and w̄ stand
for their prefixes of length n− 1, then δ(v̄, w̄)> k implies δ(v,w)>bk. It
implies that, given two integers n�m> 0 and two words v and w in An

such that bm−1<δ(v,w)� bm, there are two prefixes v̄ and w̄ of, respec-
tively, v and w of common length n−m such that δ(v̄, w̄)� 1; moreover,
for these words v̄ and w̄, there are at most b2m pairs (v,w) of words in
An such that v̄ and w̄ are, respectively, the prefixes of v and w.
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5.1. Proof of Theorem 1

Fix K a compact subinterval of J and (ηn)n�1 a bounded positive
sequence to be precised later. For ω∈�∗ and q ∈K, let us introduce the
two quantities (recall (8))

Fn(q)=SN,εn,ηnn

(
µq,µ, τ

′
µ(q)

)
and

Gn(q)=SN,εn,ηnn

(
µq,µq, τ

′
µ(q)q− τµ(q)

)
. (27)

Due to Proposition 1, we seek for a uniform control of Fn and Gn
on K. We only consider Fn, since the study of Gn is similar.

• An upper bound for Fn(q). Consider v,w ∈ An such that δ(v,w)=
k�N , as well as two prefixes v̄ and w̄ of, respectively, v and w of common
length n− [logb(k)] such that δ(v̄, w̄)� 1. Let q ∈K. If n is large enough,
(25) holds for both v and v̄. Then, using the construction of µq , item 2.
of Proposition 3, (P1), (P2) and (25), one gets for n large enough

µq([v])� C̃bC̃n3/4 log(n)µq([v̄]) and µ([w])γ ηn � C̃µ([w̄])γ ηn, (28)

where C̃ depends on C, K, ‖η̃‖∞ and ‖̃ε‖∞. Thus, by Remark 4, for n
large enough, 0�k�N and γ ∈{−1,1},

bn(τ
′
µ(q)−γ εn)γ ηn

∑

v,w∈An, δ(v,w)=k
µq([v])µ([w])γ ηn

� C̃bC̃n3/4 log(n)b(n−[logb k])(τ ′
µ(q)−γ εn)γ ηn

∑

v,w∈An−[logb k], δ(v,w)�1

µq([v])µ([w])γ ηn

for some other constant C̃ depending on C, K, N , ‖̃ε‖∞ and ‖η̃‖∞ .
Let us remark that for every integer l∈{0, . . . , logb(N)}, there are less

than bl+1 integers k ∈ [0,N ] such that [logb k] = l. One thus deduces from
the definition (27) (and (8)) of Fn(q) and from the above estimate that

Fn(q)� C̃ bC̃n
3/4 log(n)

[logb(N)]+1∑

l=0

bl+1(T1(q, n, l)+T2(q, n, l)
)
, (29)

where

T1(q, n, l)=
∑

γ∈{−1,1}
b(n−l)(τ

′
µ(q)−γ εn)γ ηn

∑

w∈An−l
µq([w])µ([w])γ ηn, (30)

T2(q, n, l)=
∑

γ∈{−1,1}
b(n−l)(τ

′
µ(q)−γ εn)γ ηn

∑

v,w∈An−l , δ(v,w)=1

µq([v])µ([w])γ ηn . (31)
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Let us first upper bound T1(q, n, l). (25) yields for some constant M ′
K that

∑

w∈Am

µq([w])µ([w])γ ηn �bmτµ(q)M ′
Kb

M ′
Km

3/4 logm
∑

w∈Am

µ([w])q+γ ηn,

where m=n− l. Using item 2. of Proposition 3, for some constant CK

∑

w∈An−l
µ([w])q+γ ηn �b−(n−l)τµ(q+γ ηn)+(n−l)CK log(n−l)(n−l)−1/4

.

Since τµ is twice continuously differentiable, one has τµ(q+γ ηn)−τµ(q)−
γ ηnτ

′
µ(q)=ηnO(ηn) independently of q ∈K (if ‖η̃‖ is small enough), and

T1(q, n, l)�2M ′
Kb

(M ′
K+CK)(n−l)3/4 log(n−l)b−(n−l)ηn(εn+O(ηn)). (32)

In order to estimate T2(q, n, l), we use the words gk and dk defined in
Proposition 4. For every m�1, a representation of the set of pairs (v,w)
in Am such that ı(w)= ı(v)+1 is the following:

m−1⋃

k=0

⋃

u∈Am−1−k

⋃

r∈{0,...,b−2}

{
(u.r.dk, u.(r+1).gk)

}
. (33)

Let m=n− l. The sum Tn,γ (q)=
∑
v,w∈Am, δ(v,w)=1µq([v])µ([w])γ ηn equals

m−1∑

k=0

∑

u∈Am−1−k

b−2∑

r=0

∑

(e,f )∈{(d,g),(g,d)}
µq([u.r.ek])µ([u.(r+1).fk])γ ηn .

Let us introduce �(q, k, n, γ ) = µ([dk])qµ([gk])γ ηn + µ([gk])qµ([dk])γ ηn .
Using (25) and property (P1) of µ, one obtains another constant C̃

such that

Tn,γ (q)� C̃(b−2)bCKm
3/4 log(m)bmτµ(q)

m−1∑

k=0

�(q, k, n, γ )
∑

u∈Am−1−k
µ([u])q+γ ηn .
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Then, item 2 of Proposition 3 yields (with another C̃)

Tn,γ (q)
� C̃ bCKm3/4 log(m)bmτµ(q)

×
m−1∑

k=0

�(q, k, n, γ )b2CK(m−1−k)3/4 log(m−k−1)−(m−k−1)τµ(q+γ ηn)

� C̃b2CKm3/4 log(m)bm(τµ(q)−τµ(q+γ ηn))
m−1∑

k=0

�(q, k, n, γ )b(k+1)τµ(q+γ ηn)

� C̃bm(−τ ′
µ(q)γ ηn+O(η2

n))b2CKm3/4 log(m)
m−1∑

k=0

�(q, k, n, γ )bkτµ(q+O(ηn)).

By Proposition 4 and (25), the sum
∑m−1
k=0 �(q, k, n, γ )b

kτµ(q+O(ηn)) is uni-
formly bounded over q ∈K and m�0 when ‖η̃‖∞ is small enough. Hence,
replacing m by n− l,

T2(q, n, l)� C̃b2CK(n−l)3/4 log(n−l) b−(n−l)ηn(εn+O(ηn)). (34)

Finally, combining (29), (32), and (34) yields

Fn(q) � C̃bC̃n
3/4 log(n)

[logb(N)]+1∑

l=0

bl+1bO((n−l)
3/4 log(n−l))b−(n−l)ηn(εn+O(ηn))

=O(bMn3/4 log(n)b−nηn(εn+O(ηn)))

for some M > 0 independently of q ∈K. By our assumption on εn, the
choice ηn=αεn with α small enough so that ηn(εn+O(ηn))�αε2

n/2 makes
the series

∑
n�1 Fn(q) converge for every q ∈K. The conclusion concern-

ing the sets Eµ
τ ′
µ(q)

(N, ε̃) then follows from Proposition 1.

5.2. Proof of Theorem 2

Fix ᾱ ∈ (1, α). We use twice (26), with ᾱ and α, in order to get
a control like (28). For j large enough, if n�

[
exp

(√
α log(j)

)]
and if

v ∈ An and v̄ is a prefix of v such that |v̄| � n − logb(n), then |v̄| �[
exp

(√
ᾱ log(j)

)]
and (28) holds for v and v̄. Then, from the computa-

tions performed in the proof of Theorem 1 and from Proposition 4, one
deduces that for every compact subinterval K of J , there exist C,M,β>0
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and η̃= (ηn)n�1 ∈R
N

∗
+ such that with probability one, for j large enough,

if n�
[

exp
(√
α log(j)

)]
, for all q ∈K

max
(
SN,εn,ηn

(
µ
(j)
q ,µ(j), τ ′

µ(q)
)
, SN,εn,ηn

(
µ
(j)
q ,µ

(j)
q , qτ ′

µ(q)− τµ(q)
))

�CbMn3/4 log(n)−βnε2
n .

In order to apply Proposition 2, let us define

• �=K, λ=q and {(m(j)λ ,µ
(j)
λ )}j�0,λ∈K ={(µ(j)q ,µ(j))}j�0,q∈K ,

• {βλ}λ∈�={τ ′
µ(q)}q∈K ,

• for every j �1 and for n�1, V (j)n =CbMn3/4 log(n)b−βnε2
n ,

• for every j �1, ψj (̃η)=Sj = [ exp
(√
α log(j)

)]
.

With these parameters the conditions of Proposition 2 are fulfilled.
As a consequence, with probability one, for j large enough, for all q ∈K,
GS(µ

(j)
q ,µ(j), τ ′

µ(q),N, ε̃)�
[

exp
(√
α log(j)

)]
.

Let us then consider the families {(µ(j)q ,µ
(j)
q )}j�0,q∈K and {τ ′

µ(q)q−
τµ(q)}q∈K instead of the family {(µ(j)q ,µ(j))}j�0,q∈K and {τ ′

µ(q)}q∈K ,
respectively, and keep the same definitions for the other variables involved
in Proposition 2. Then the same control as above holds for the growth
speed GS

(
µ
(j)
q ,µ

(j)
q , qτ ′

µ(q)−τµ(q),N, ε̃
)
. Notice that here the vector V (j)

is deterministic.

5.3. Proof of Theorem 3

Fix α> 1 and K a compact subinterval of J and N = 0. A standard
Markov inequality (as in Proposition 1) shows that for j�0, n�1 and q∈
K, one has Nn

(
µ(j), τ ′

µ(q), εn
)
� b−nτ (j)n (q)bnq(τ

′
µ(q)+sgn(q)εn), where sgn(q)

stands for the sign of q. Then, by Proposition 4, with probability one, one
has for j large enough, for n� exp

(√
α log(j)

)
and for q ∈K

Nn

(
µ(j), τ ′

µ(q), εn
)
�b−nτ (j)n (q)bnq(τ

′
µ(q)+sgn(q)εn)�bn(τ ′

µ(q)q−τµ(q)+ε′n),

where ε′n = supq∈K MKn
−1/4 log(n)+ |q|εn. One remarks that ε′n � εn(1 +

supq∈K |q|) for n large enough. On the other hand, let

E=
(
E
µ(j)

τ ′
µ(q),

[
exp

√
α log(j)

](0, ε̃)
)⋂(

E
µ
(j)
q

τ ′
µ(q)q−τµ(q),

[
exp

√
α log(j)

](0, ε̃)
)
.
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Using Theorem 2, with probability one, for j large enough, for all q ∈
N , µ(j)q (E) � ‖µ(j)q ‖/2 = 1/2. But, looking back at the definition of E,
one remarks that µ(j)q (E)� Nn

(
µ(j), τ ′

µ(q), εn
)
b−n(τ ′

µ(q)q−τµ(q)−εn) for n�
exp

(√
α log(j)

)
, that is bn(τ

′
µ(q)q−τµ(q)−εn)/2�Nn

(
µ(j), τ ′

µ(q), εn
)
.
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19. J. Lévy Véhel and R. H. Riedi, TCP traffic is multifractal: a numerical study, INRIA
research Report, RR-3129 (1997).

20. B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of hight
moments and dimension of the carrier, J. Fluid. Mech. 62:331–358 (1974).

21. B. B. Mandelbrot, Fractals and Scaling in Finance: Discontinuity, Concentration, Risk,
(Springer, 1997).

22. G. Michon, Mesures de Gibbs sur les Cantor Réguliers, Ann. Inst. Henri Poincaré: Phys.
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